论文标题

观察振荡$ g $ -Factor各向异性是由GAAS Spin-3/2孔量子点触点在GAAS Spin-3/2孔中引起的

Observation of oscillating $g$-factor anisotropy arising from strong crystal lattice anisotropy in GaAs spin-3/2 hole quantum point contacts

论文作者

Hudson, Karina, Srinivasan, Ashwin, Miserev, Dmitry, Wang, Qingwen, Klochan, Oleh, Sushkov, Oleg, Farrer, Ian, Ritchie, David, Hamilton, Alex

论文摘要

许多现代自旋的设备依赖于自旋轨道相互作用,该相互作用对宿主半导体异质结构高度敏感,并且取决于晶体方向,晶体不对称性(Dresselhaus)和量子限制不对称(Rashba)。一维量子点触点是通过对孔$ g $因素的影响探测自旋轨道相互作用的能量和方向依赖性的强大工具。在这项工作中,我们调查了立方晶体不对称的作用在驱动面内孔$ G $ g $ -FACTOR各向异性中的振荡方面,当量子点接触相对于晶体轴旋转时,我们能够分离出由Rashba和Cubba and Cubicic Crystal symmetmemmetry Spinermetry Spin-Orbit-Orbit旋转的Zeeman Hamiltonian贡献。发现面内$ g $ -FACTOR对量子点联系的方向非常敏感,当旋转$ 45^{\ circ} $时,变化$ 5 $。平面齐曼分裂的这种异常强的晶格各向异性无法在轴向对称的理论模型中解释。我们在这里使用的基于合并的Luttinger,Rashba和Dresselhaus Hamiltonians的理论建模揭示了对平面孔$ G $ factor的新旋转轨道贡献,并与我们的实验数据提供了极好的一致性。

Many modern spin-based devices rely on the spin-orbit interaction, which is highly sensitive to the host semiconductor heterostructure and varies substantially depending on crystal direction, crystal asymmetry (Dresselhaus), and quantum confinement asymmetry (Rashba). One-dimensional quantum point contacts are a powerful tool to probe both energy and directional dependence of spin-orbit interaction through the effect on the hole $g$-factor. In this work we investigate the role of cubic crystal asymmetry in driving an oscillation in the in-plane hole $g$-factor anisotropy when the quantum point contact is rotated with respect to the crystal axes, and we are able to separate contributions to the Zeeman Hamiltonian arising from Rashba and cubic crystal asymmetry spin-orbit interactions. The in-plane $g$-factor is found to be extremely sensitive to the orientation of the quantum point contact, changing by a factor of $5$ when rotated by $45^{\circ}$. This exceptionally strong crystal lattice anisotropy of the in-plane Zeeman splitting cannot be explained within axially symmetric theoretical models. Theoretical modelling based on the combined Luttinger, Rashba and Dresselhaus Hamiltonians that we use here reveals new spin-orbit contributions to the in-plane hole $g$-factor and provides an excellent agreement with our experimental data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源