论文标题

与3D深卷积的合并时空缩减模型相结合,用于推断流体动力学

Combined space-time reduced-order model with 3D deep convolution for extrapolating fluid dynamics

论文作者

Deo, Indu Kant, Gao, Rui, Jaiman, Rajeev

论文摘要

在航空航天和海洋工程应用中,有效且可靠的主动流控制策略非常需要有效,可靠的主动流控制策略。尽管基于Navier-Stokes方程的传统全阶模型是不可行的,但高级模型还原技术可能对主动控制任务效率低下,尤其是具有强大的非线性和对流为主的现象。使用卷积复发的自动编码器网络体系结构,最近已证明基于深度学习的减少阶模型在执行比全阶模拟快的数量级时有效。但是,这些模型在培训数据之外遇到了重大挑战,从而限制了它们对主动控制和优化任务的有效性。在这项研究中,我们旨在通过修改网络体系结构并将耦合时空物理学作为隐性偏见来提高外推能力。通过深度学习的减少模型通常在空间和时间维度中采用脱钩,这可能引入建模和近似误差。为了减轻这些错误,我们提出了一种使用3D卷积网络学习耦合时空相关的新技术。我们评估针对标准编码器 - 驱动器模型模型的提议技术,并展示了出色的外推性能。为了证明3D卷积网络的有效性,我们考虑了在层流条件下经过圆柱体的基准问题,并使用了全阶模拟中的时空快照。我们提出的3D卷积体系结构准确地捕获了不同雷诺数的速度和压力场。与标准的编码器 - 驱动器 - 码头网络相比,基于时空的3D卷积网络可改善训练数据之外的雷诺数的预测范围。

There is a critical need for efficient and reliable active flow control strategies to reduce drag and noise in aerospace and marine engineering applications. While traditional full-order models based on the Navier-Stokes equations are not feasible, advanced model reduction techniques can be inefficient for active control tasks, especially with strong non-linearity and convection-dominated phenomena. Using convolutional recurrent autoencoder network architectures, deep learning-based reduced-order models have been recently shown to be effective while performing several orders of magnitude faster than full-order simulations. However, these models encounter significant challenges outside the training data, limiting their effectiveness for active control and optimization tasks. In this study, we aim to improve the extrapolation capability by modifying network architecture and integrating coupled space-time physics as an implicit bias. Reduced-order models via deep learning generally employ decoupling in spatial and temporal dimensions, which can introduce modeling and approximation errors. To alleviate these errors, we propose a novel technique for learning coupled spatial-temporal correlation using a 3D convolution network. We assess the proposed technique against a standard encoder-propagator-decoder model and demonstrate a superior extrapolation performance. To demonstrate the effectiveness of 3D convolution network, we consider a benchmark problem of the flow past a circular cylinder at laminar flow conditions and use the spatio-temporal snapshots from the full-order simulations. Our proposed 3D convolution architecture accurately captures the velocity and pressure fields for varying Reynolds numbers. Compared to the standard encoder-propagator-decoder network, the spatio-temporal-based 3D convolution network improves the prediction range of Reynolds numbers outside of the training data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源