论文标题

HDNET:使用毫米波雷达进行步态识别的分层动态网络

HDNet: Hierarchical Dynamic Network for Gait Recognition using Millimeter-Wave Radar

论文作者

Huang, Yanyan, Wang, Yong, Shi, Kun, Gu, Chaojie, Fu, Yu, Zhuo, Cheng, Shi, Zhiguo

论文摘要

步态识别被广泛用于多元化的实际应用中。当前,由于计算机视觉技术的进步,最普遍的方法是从RGB图像中识别人类步态。然而,在粗糙的情况下,RGB相机的感知能力会恶化,视觉监视可能会导致隐私入侵。由于毫米波(MMWave)雷达的鲁棒性和非侵入性特征,基于雷达的步态识别引起了近年来的越来越多的关注。在这项研究中,我们提出了一个使用MMWave雷达的层次动态网络(HDNET),以进行步态识别。为了探索更多动态信息,我们将点流作为新的点云描述符。我们还设计了一个动态的框架采样模块,以促进计算效率,而不会明显恶化性能。为了证明我们方法的优势,我们对两个基于公共MMWAVE的步态识别数据集进行了广泛的实验,结果表明我们的模型优于现有的最新方法。

Gait recognition is widely used in diversified practical applications. Currently, the most prevalent approach is to recognize human gait from RGB images, owing to the progress of computer vision technologies. Nevertheless, the perception capability of RGB cameras deteriorates in rough circumstances, and visual surveillance may cause privacy invasion. Due to the robustness and non-invasive feature of millimeter wave (mmWave) radar, radar-based gait recognition has attracted increasing attention in recent years. In this research, we propose a Hierarchical Dynamic Network (HDNet) for gait recognition using mmWave radar. In order to explore more dynamic information, we propose point flow as a novel point clouds descriptor. We also devise a dynamic frame sampling module to promote the efficiency of computation without deteriorating performance noticeably. To prove the superiority of our methods, we perform extensive experiments on two public mmWave radar-based gait recognition datasets, and the results demonstrate that our model is superior to existing state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源