论文标题

循环对称的托马斯振荡器作为伴侣:活性流体和图案形成的范式

Cyclically Symmetric Thomas Oscillators As Swarmalators : A paradigm for Active Fluids & Pattern Formation

论文作者

Vijayan, Vinesh, Das, Pranaya Pratik

论文摘要

在这封信中,我们证明了周期性的对称托马斯振荡器作为伴侣,并描述了它们可能的集体动态。我们通过将黑素型相动态缝制到由托马斯模型代表的粒子动力学来实现这一目标。更确切地说,这等同于具有坐标和位置依赖性相动态的循环对称性的非线性粒子聚集模型。非线性方程描述了系统参数两个极端值的结晶顺序和混乱随机性的时空模式。这种模式是非线性自组织的结果,这导致了新的湍流 - 主动湍流。我们声称该模型可以捕获许多天然发生的微生物和微晶状体的动力学。这封信中描述的模型可以是理解主动系统的典型模型,并可能阐明使用令人兴奋的生物医学和工业应用制作新型材料(活跃物质)的可能性。这样做的关键是对活动系统的复杂动力学的理解和控制,这是一个平衡系统,这可能有助于制造功能材料,纳米和微机器。

In this letter, we demonstrate the cyclically symmetric Thomas oscillators as swarmalators and describe their possible collective dynamics. We achieve this by sewing Kuromoto-type phase dynamics to particle dynamics represented by the Thomas model. More precisely, this is equivalent to a non-linear particle aggregation model with cyclic symmetry of coordinates and position-dependent phase dynamics. The non-linear equations describe spatiotemporal patterns of crystalline order and chaotic randomness at two extreme values of the system parameter. This pattern is the outcome of non-linear self-organization, which leads to a new class of turbulent flow - active turbulence. We claim that this model can capture the dynamics of many naturally occurring microorganisms and micro-swimmers. The model described in this letter can be a prototypical model for understanding active systems and may shed light on the possibility of making novel materials(active matter) with exciting biomedical and industrial applications. The key to this is the understanding and control over the complex dynamics of active systems, an out-of-equilibrium system, which is potentially helpful in making functional materials, nano and micromachines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源