论文标题
在投资组合优化中整合多个序数信息来源
Integrating multiple sources of ordinal information in portfolio optimization
论文作者
论文摘要
主动投资组合管理试图将任何有意义的信息纳入资产选择过程中。在这项贡献中,我们将指定为预期资产回报的总订单的定性观点,并讨论了将此输入纳入均值变化投资组合优化模型的两种不同的方法。在强大的优化方法中,我们首先通过扩展黑色列车人(BL)框架来计算每个给定总订单的资产回报的后验预期。然后,这些预期的资产回报被认为是均值优化变体模型的强大优化变体的可能输入方案(Max-min稳健性,Min Min Rearne Rearmustness and Sore Sore稳健性和软鲁棒性)。在“社会选择理论”(Borda,Footrule,Copeland,Best-K和MC4)的顺序聚合方法中,用于将总订单汇总为单一的``共识总订单''。然后,通过上述扩展的BL框架计算此``共识总订单''的预期资产回报。最后,这些期望被用作经典均值优化的输入。使用Eurostoxx 50和S&P 100的数据,我们从经验上比较了在投资组合绩效分析的背景下两种方法的成功,并观察到,通过社会选择方法总体汇总的订单通常优于基于两个数据集的基于强大优化的方法。
Active portfolio management tries to incorporate any source of meaningful information into the asset selection process. In this contribution we consider qualitative views specified as total orders of the expected asset returns and discuss two different approaches for incorporating this input in a mean-variance portfolio optimization model. In the robust optimization approach we first compute a posterior expectation of asset returns for every given total order by an extension of the Black-Litterman (BL) framework. Then these expected asset returns are considered as possible input scenarios for robust optimization variants of the mean-variance portfolio model (max-min robustness, min regret robustness and soft robustness). In the order aggregation approach rules from social choice theory (Borda, Footrule, Copeland, Best-of-k and MC4) are used to aggregate the total order in a single ``consensus total order''. Then expected asset returns are computed for this ``consensus total order'' by the extended BL framework mentioned above. Finally, these expectations are used as an input of the classical mean-variance optimization. Using data from EUROSTOXX 50 and S&P 100 we empirically compare the success of the two approaches in the context of portfolio performance analysis and observe that in general aggregating orders by social choice methods outperforms robust optimization based methods for both data sets.