论文标题
改进的晶格方法,用于确定SU(N)理论中的纠缠措施
Improved lattice method for determining entanglement measures in SU(N) gauge theories
论文作者
论文摘要
SU(n)理论中纠缠措施的确定是一项非平凡的任务。借助所谓的“复制技巧”,可以用格子蒙特·卡洛(Lattice Monte Carlo)确定一个称为“Rényi熵”的纠缠措施家庭。不幸的是,SU(N)晶格仪理论的副本方法的标准实施遭受了严重的信噪比问题,因此对Rényi熵的高度精确研究非常昂贵。在这项工作中,我们提出了一种克服信噪比问题的方法,并在4个维度上显示了SU(N)的一些第一个结果。
The determination of entanglement measures in SU(N) gauge theories is a non-trivial task. With the so-called "replica trick", a family of entanglement measures, known as "Rényi entropies", can be determined with lattice Monte Carlo. Unfortunately, the standard implementation of the replica method for SU(N) lattice gauge theories suffers from a severe signal-to-noise ratio problem, rendering high-precision studies of Rényi entropies prohibitively expensive. In this work, we propose a method to overcome the signal-to-noise ratio problem and show some first results for SU(N) in 4 dimensions.