论文标题
非线性钻石光子学中的孤子压缩和超脑光谱
Soliton compression and supercontinuum spectra in nonlinear diamond photonics
论文作者
论文摘要
我们在数值上探索了合成晶体钻石,以实现在现在很难实现其他材料(例如低于10-FS脉冲持续时间和具有挑战性的光谱范围)的范围内的新光源。我们评估了片上钻石波导的性能,以通过非线性孤子动力学来控制光生。调整这种钻石波导的横截面可以设计具有自定义零分散点和异常分散范围的分散曲线,超过了八度。可以在Diamond Photonics中实现各种传播动力学,包括通过孤子裂变产生超脑的动力学。与通常的基于二氧化硅的光纤形成鲜明对比的是,在米毫米级传播距离中,这种过程发生在米的尺度上是足够的。在孤子裂变之前,孤子动力学不受干扰,可以识别脉冲自我压缩方案,该场景有望在芯片尺寸的传播长度上进行创纪录的破坏压缩因子。
We numerically explore synthetic crystal diamond for realizing novel light sources in ranges which are up to now difficult to achieve with other materials, such as sub-10-fs pulse durations and challenging spectral ranges. We assess the performance of on-chip diamond waveguides for controlling light generation by means of nonlinear soliton dynamics. Tailoring the cross-section of such diamond waveguides allows to design dispersion profiles with custom zero-dispersion points and anomalous dispersion ranges exceeding an octave. Various propagation dynamics, including supercontinuum generation by soliton fission, can be realized in diamond photonics. In stark contrast to usual silica-based optical fibers, where such processes occur on the scale of meters, in diamond millimeter-scale propagation distances are sufficient. Unperturbed soliton-dynamics prior to soliton fission allow to identify a pulse self-compression scenario that promises record-breaking compression factors on chip-size propagation lengths.