论文标题

无限维自适应边界观察者,用于使用表面热仪传感的3D电外科过程的内域温度估计

Infinite-Dimensional Adaptive Boundary Observer for Inner-Domain Temperature Estimation of 3D Electrosurgical Processes using Surface Thermography Sensing

论文作者

El-Kebir, Hamza, Ran, Junren, Ostoja-Starzewski, Martin, Berlin, Richard, Bentsman, Joseph, Chamorro, Leonardo P.

论文摘要

我们提出了一种新型的3D自适应观察者框架,用于测定电外科手术中的地下有机组织温度。观察者结构利用从实时红外热电器获得的2D表面温度读数,以进行参数估计和温度场观察。我们引入了一种新的方法来解耦参数适应和估计,其中参数估计可以实时运行,而观察者循环则以较慢的时间尺度运行。为了实现这一目标,我们引入了一种新型参数估计方法,称为基于注意力的噪声射击平均,其中使用表面热力计时间序列来直接估计组织的扩散率。我们的观察者基于此扩散率适应定律包含一个实时参数适应成分,以及基于感知的表面温度的Luenberger-type校正器。在这项工作中,我们还提出了一种适合机器人手术设置的新型模型结构,其中我们将电外科热分布建模为紧凑型幅度级级和速度控制的热源,涉及新的非线性输入映射。我们使用现实生活实验的外猪组织数据证明了自适应观察者在模拟中的令人满意的性能。

We present a novel 3D adaptive observer framework for use in the determination of subsurface organic tissue temperatures in electrosurgery. The observer structure leverages pointwise 2D surface temperature readings obtained from a real-time infrared thermographer for both parameter estimation and temperature field observation. We introduce a novel approach to decoupled parameter adaptation and estimation, wherein the parameter estimation can run in real-time, while the observer loop runs on a slower time scale. To achieve this, we introduce a novel parameter estimation method known as attention-based noise-robust averaging, in which surface thermography time series are used to directly estimate the tissue's diffusivity. Our observer contains a real-time parameter adaptation component based on this diffusivity adaptation law, as well as a Luenberger-type corrector based on the sensed surface temperature. In this work, we also present a novel model structure adapted to the setting of robotic surgery, wherein we model the electrosurgical heat distribution as a compactly supported magnitude- and velocity-controlled heat source involving a new nonlinear input mapping. We demonstrate satisfactory performance of the adaptive observer in simulation, using real-life experimental ex vivo porcine tissue data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源