论文标题
在K3表面的Lagrangian Tori上
On Lagrangian tori in K3 surfaces
论文作者
论文摘要
K3表面中的每个Maslov-Zero Lagrangian圆环都有非平凡的同源性类别。该注释旨在将此结果扩展到带有Maslov索引的Lagrangian Tori,该指数与零Modulo 4一致。相反,我们表明,每个同源性的Lagrangian torus都一定是Maslov-Zero。
Every Maslov-zero Lagrangian torus in a K3 surface has non-trivial homology class. This note aims to extend this result to Lagrangian tori with Maslov indices congruent to zero modulo 4. Conversely, we show that every homologically non-trivial Lagrangian torus is necessarily Maslov-zero.