论文标题

在第一个Chebyshev功能上有效的De la Valle Poussin风格界限

Effective de la Valle Poussin style bounds on the first Chebyshev function

论文作者

Visser, Matt

论文摘要

1898年,查尔斯·迪拉·瓦莱·普森(Charles Jean de la Valle Poussin)作为他著名的素数定理证明的一部分,在形式的第一个chebyshev函数上产生了无效的界限:\ [|θ(x)-x | = \ Mathcal {o} \ left(x \ exp(-k \ sqrt {\ ln x}))\ right)。 \]此限制为$ x $足够大,$ x \ geq x_0 $和$ k $有些未指定的正常常数。据我所知,这种界限从未有效 - 我从未见过这种界限完全明确,并以$ x_0 $和$ k $给出精确的值。此处,使用过去50年中建立的许多有效结果,我将开发两个非常简单的这种类型的完全有效界限:\ [|θ(x)-x | <\; {x} \; \ exp \ left( - {1 \ over4} \ sqrt {\ ln x} \ right); \ qquad(x \ geq 2)。 \] \ [|θ(x)-x | <\; {x} \; \ exp \ left( - {1 \ over3} \ sqrt {\ ln x} \ right); \ qquad(x \ geq 3)。 \]可以很容易地开发出许多其他沿着这些线路的完全明确的界限。例如,可以在有效性范围内进行严格权衡:\ [|θ(x)-x | <\; {1 \ over 2} \; {x} \; \ exp \ left( - {1 \ over4} \ sqrt {\ ln x} \ right); \ qquad(x \ geq 29),\] \ [|θ(x)-x | <\; {1 \ over 2} \; {x} \; \ exp \ left( - {1 \ over3} \ sqrt {\ ln x} \ right); \ qquad(x \ geq 41)。 \ \]在事后看来,其中一些有效的界限本可以在大约50年前建立。

In 1898 Charles Jean de la Valle Poussin, as part of his famed proof of the prime number theorem, developed an ineffective bound on the first Chebyshev function of the form: \[ |θ(x)-x| = \mathcal{O}\left(x \exp(-K \sqrt{\ln x})\right). \] This bound holds for $x$ sufficiently large, $x\geq x_0$, and $K$ some unspecified positive constant. To the best of my knowledge this bound has never been made effective -- I have never yet seen this bound made fully explicit, with precise values being given for $x_0$ and $K$. Herein, using a number of effective results established over the past 50 years, I shall develop two very simple explicit fully effective bounds of this type: \[ |θ(x)-x| < \; {x} \;\exp\left( - {1\over4} \sqrt{\ln x}\right); \qquad (x\geq 2). \] \[ |θ(x)-x| < \; {x} \;\exp\left( - {1\over3} \sqrt{\ln x}\right); \qquad (x\geq 3). \] Many other fully explicit bounds along these lines can easily be developed. For instance one can trade off stringency against range of validity: \[ |θ(x)-x| < \; {1\over 2} \; {x} \;\exp\left( - {1\over4} \sqrt{\ln x}\right); \qquad (x\geq 29), \] \[ |θ(x)-x| < \; {1\over 2} \; {x} \;\exp\left( - {1\over3} \sqrt{\ln x}\right); \qquad (x\geq 41). \] With hindsight, some of these effective bounds could have been established almost 50 years ago.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源