论文标题
在公制 - 帕拉蒂尼重力中物质的几何proca
Geometric Proca with Matter in Metric-Palatini Gravity
论文作者
论文摘要
在目前的工作中,我们研究了线性,无扭转的公制 - 帕拉蒂尼重力,这是由ricci张量的反对称部分的二次进行扩展的,并通过物质部门的仿射连接也扩展了。我们表明,这种扩展的度量 - 帕拉蒂重力将动态减少到一般相对论,以及与连接非中线相对应的几何质量大规模矢量场。我们还表明,这几何Proca野外伴侣普遍伴随着费米子。我们得出了这个爱因斯坦 - 几何Proca理论的静态,球体对称场方程。我们通过考虑到粉尘分布的存在,研究黑洞溶液的可能性。我们的分析和数值分析表明,这种灰尘的存在使地平线形成的可能性恶化。我们简要地讨论了这种普遍耦合的几何proca在天体物理和对撞机过程中的可能作用。
In the present work, we study linear, torsion-free metric-Palatini gravity, extended by the quadratics of the antisymmetric part of the Ricci tensor and extended also by the presence of the affine connection in the matter sector. We show that this extended metric-Palatini gravity reduces dynamically to the general relativity plus a geometrical massive vector field corresponding to non-metricity of the connection. We also show that this geometric Proca field couples to fermions universally. We derive static, spherically symmetric field equations of this Einstein-geometric Proca theory. We study possibility of black hole solutions by taking into account the presence of a dust distribution that couples to the geometric Proca. Our analytical and numerical analyses show that the presence of this dust worsens the possibility of horizon formation. We briefly discuss possible roles of this universally-coupled geometric Proca in the astrophysical and collider processes.