论文标题
DPM-Solver ++:用于扩散概率模型的引导采样的快速求解器
DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models
论文作者
论文摘要
扩散概率模型(DPM)在高分辨率图像合成中取得了令人印象深刻的成功,尤其是在最近的大型文本到图像生成应用中。提高DPM的样品质量的基本技术是指导采样,通常需要大量的指导量表才能获得最佳的样品质量。用于引导采样的通常使用的快速采样器是DDIM,DDIM是一种一阶扩散ode求解器,通常需要100至250步的高质量样品。尽管最近的作品提出了专用的高阶求解器,并在没有指导的情况下实现了进一步的采样加速,但其对引导抽样的有效性尚未经过良好的测试。在这项工作中,我们证明了以前的高阶快速采样器遭受不稳定性问题的困扰,并且当指导量表增长时,它们甚至比DDIM慢。为了进一步加快引导采样的速度,我们提出了DPM-Solver ++,这是一种用于DPM的指导采样器的高阶求解器。 DPM-Solver ++使用数据预测模型求解扩散ODE,并采用阈值方法来保持解决方案与训练数据分布相匹配。我们进一步提出了DPM-Solver ++的多步型变体,以通过降低有效的步进大小来解决不稳定性问题。实验表明,DPM-Solver ++只能在15到20个步骤内生成高质量的样本,以通过像素空间和潜在空间DPM进行指导采样。
Diffusion probabilistic models (DPMs) have achieved impressive success in high-resolution image synthesis, especially in recent large-scale text-to-image generation applications. An essential technique for improving the sample quality of DPMs is guided sampling, which usually needs a large guidance scale to obtain the best sample quality. The commonly-used fast sampler for guided sampling is DDIM, a first-order diffusion ODE solver that generally needs 100 to 250 steps for high-quality samples. Although recent works propose dedicated high-order solvers and achieve a further speedup for sampling without guidance, their effectiveness for guided sampling has not been well-tested before. In this work, we demonstrate that previous high-order fast samplers suffer from instability issues, and they even become slower than DDIM when the guidance scale grows large. To further speed up guided sampling, we propose DPM-Solver++, a high-order solver for the guided sampling of DPMs. DPM-Solver++ solves the diffusion ODE with the data prediction model and adopts thresholding methods to keep the solution matches training data distribution. We further propose a multistep variant of DPM-Solver++ to address the instability issue by reducing the effective step size. Experiments show that DPM-Solver++ can generate high-quality samples within only 15 to 20 steps for guided sampling by pixel-space and latent-space DPMs.