论文标题

具有奇异潜力的安德森汉密尔顿人

Anderson Hamiltonians with singular potentials

论文作者

Matsuda, Toyomu, van Zuijlen, Willem

论文摘要

我们构建随机的Schrödinger操作员,称为Anderson Hamiltonians,具有Dirichlet和Neumann边界条件,用于有界域上相当一般的奇异随机电位。此外,我们构建了这些安德森汉密尔顿人的综合状态密度,并将LIFSCHITZ尾巴(国家综合密度的左尾的渐近学)与主要特征值的左尾联系起来。

We construct random Schrödinger operators, called Anderson Hamiltonians, with Dirichlet and Neumann boundary conditions for a fairly general class of singular random potentials on bounded domains. Furthermore, we construct the integrated density of states of these Anderson Hamiltonians, and we relate the Lifschitz tails (the asymptotics of the left tails of the integrated density of states) to the left tails of the principal eigenvalues.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源