论文标题

实例依赖性概括通过最佳传输界限

Instance-Dependent Generalization Bounds via Optimal Transport

论文作者

Hou, Songyan, Kassraie, Parnian, Kratsios, Anastasis, Krause, Andreas, Rothfuss, Jonas

论文摘要

现有的概括范围无法解释驱动现代神经网络概括的关键因素。由于这种界限通常在所有参数上都均匀地保持,因此它们遭受了过度参数化的影响,并且无法解决初始化和随机梯度下降的强感应偏置。作为替代方案,我们提出了对概括问题的新型最佳运输解释。这使我们能够得出取决于数据空间中学习预测函数的本地LIPSCHITZ规则性的实例依赖性概括界限。因此,我们的边界对模型的参数化不可知,并且当训练样本的数量远小于参数时,就可以很好地工作。通过微小的修改,我们的方法在低维流形和分配变化的保证方面得出了加速率。我们通过经验分析神经网络的概括界限,表明界值是有意义的,并捕获了训练过程中流行正则化方法的效果。

Existing generalization bounds fail to explain crucial factors that drive the generalization of modern neural networks. Since such bounds often hold uniformly over all parameters, they suffer from over-parametrization and fail to account for the strong inductive bias of initialization and stochastic gradient descent. As an alternative, we propose a novel optimal transport interpretation of the generalization problem. This allows us to derive instance-dependent generalization bounds that depend on the local Lipschitz regularity of the learned prediction function in the data space. Therefore, our bounds are agnostic to the parametrization of the model and work well when the number of training samples is much smaller than the number of parameters. With small modifications, our approach yields accelerated rates for data on low-dimensional manifolds and guarantees under distribution shifts. We empirically analyze our generalization bounds for neural networks, showing that the bound values are meaningful and capture the effect of popular regularization methods during training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源