论文标题

部分可观测时空混沌系统的无模型预测

Implicit Neural Representation as a Differentiable Surrogate for Photon Propagation in a Monolithic Neutrino Detector

论文作者

Lei, Minjie, Tsang, Ka Vang, Gasiorowski, Sean, Li, Chuan, Nashed, Youssef, Petrillo, Gianluca, Piazza, Olivia, Ratner, Daniel, Terao, Kazuhiro

论文摘要

光光子在多种粒子探测器中用作信号。现代中微子实验采用数百至成千上万的光子检测器来观察来自电荷颗粒能量沉积产生的数百万到数十亿闪烁光子的信号。这些中微子探测器通常很大,包含具有不同光学特性的目标体积的千射线。以查找表的形式对单个光子传播进行建模需要大量的计算资源。随着表的大小随探测器的体积而增加,对于固定分辨率,该方法对于将来的较大检测器而言缩放较差。诸如将多项式拟合到模型之类的替代方法可以解决记忆问题,但导致性能较差。查找表和拟合方法都易于检测器模拟与收集的数据之间的差异。我们提出了一种使用Siren的新方法,Siren是一种具有周期性激活功能的隐式神经表示形式,将查找表建模为3D场景,并以高精度重现接受图。我们的警笛模型中的参数数量比查找表中的体素数小的数量级。由于它建模了潜在的功能形状,因此警报器可扩展到较大的检测器。此外,警报器可以成功学习光子库的空间梯度,为下游应用程序提供其他信息。最后,由于警报器是一种神经网络表示,因此相对于其参数是可区分的,因此可以通过梯度下降来调整。我们证明了直接在真实数据上优化警报器的潜力,这减轻了数据与仿真差异的关注。我们进一步介绍了用于数据重建的应用程序,该应用程序用于在光子统计中形成可能性函数。

Optical photons are used as signal in a wide variety of particle detectors. Modern neutrino experiments employ hundreds to tens of thousands of photon detectors to observe signal from millions to billions of scintillation photons produced from energy deposition of charged particles. These neutrino detectors are typically large, containing kilotons of target volume, with different optical properties. Modeling individual photon propagation in form of look-up table requires huge computational resources. As the size of a table increases with detector volume for a fixed resolution, this method scales poorly for future larger detectors. Alternative approaches such as fitting a polynomial to the model could address the memory issue, but results in poorer performance. Both look-up table and fitting approaches are prone to discrepancies between the detector simulation and the data collected. We propose a new approach using SIREN, an implicit neural representation with periodic activation functions, to model the look-up table as a 3D scene and reproduces the acceptance map with high accuracy. The number of parameters in our SIREN model is orders of magnitude smaller than the number of voxels in the look-up table. As it models an underlying functional shape, SIREN is scalable to a larger detector. Furthermore, SIREN can successfully learn the spatial gradients of the photon library, providing additional information for downstream applications. Finally, as SIREN is a neural network representation, it is differentiable with respect to its parameters, and therefore tunable via gradient descent. We demonstrate the potential of optimizing SIREN directly on real data, which mitigates the concern of data vs. simulation discrepancies. We further present an application for data reconstruction where SIREN is used to form a likelihood function for photon statistics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源