论文标题
使用拓扑数据分析可靠的恶意软件分析和检测
Reliable Malware Analysis and Detection using Topology Data Analysis
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Increasingly, malwares are becoming complex and they are spreading on networks targeting different infrastructures and personal-end devices to collect, modify, and destroy victim information. Malware behaviors are polymorphic, metamorphic, persistent, able to hide to bypass detectors and adapt to new environments, and even leverage machine learning techniques to better damage targets. Thus, it makes them difficult to analyze and detect with traditional endpoint detection and response, intrusion detection and prevention systems. To defend against malwares, recent work has proposed different techniques based on signatures and machine learning. In this paper, we propose to use an algebraic topological approach called topological-based data analysis (TDA) to efficiently analyze and detect complex malware patterns. Next, we compare the different TDA techniques (i.e., persistence homology, tomato, TDA Mapper) and existing techniques (i.e., PCA, UMAP, t-SNE) using different classifiers including random forest, decision tree, xgboost, and lightgbm. We also propose some recommendations to deploy the best-identified models for malware detection at scale. Results show that TDA Mapper (combined with PCA) is better for clustering and for identifying hidden relationships between malware clusters compared to PCA. Persistent diagrams are better to identify overlapping malware clusters with low execution time compared to UMAP and t-SNE. For malware detection, malware analysts can use Random Forest and Decision Tree with t-SNE and Persistent Diagram to achieve better performance and robustness on noised data.