论文标题

Graimatter绿皮书:对受信任研究环境(TRE)的培训机器学习(ML)模型的披露控制建议的建议

GRAIMATTER Green Paper: Recommendations for disclosure control of trained Machine Learning (ML) models from Trusted Research Environments (TREs)

论文作者

Jefferson, Emily, Liley, James, Malone, Maeve, Reel, Smarti, Crespi-Boixader, Alba, Kerasidou, Xaroula, Tava, Francesco, McCarthy, Andrew, Preen, Richard, Blanco-Justicia, Alberto, Mansouri-Benssassi, Esma, Domingo-Ferrer, Josep, Beggs, Jillian, Chuter, Antony, Cole, Christian, Ritchie, Felix, Daly, Angela, Rogers, Simon, Smith, Jim

论文摘要

TRE是广泛的,并且越来越多地用于支持对敏感数据(例如,健康,警察,税收和教育)的敏感数据的统计分析,因为它们可以在保护数据机密性的同时,可以实现安全透明的研究。从学术界和行业培训TRE的AI模型的渴望越来越大。 AI领域正在迅速开发,包括发现人为错误,简化过程,任务自动化和决策支持的应用程序。这些复杂的AI模型需要更多信息来描述和复制,从而增加了可以从此类描述中推断出敏感的个人数据的可能性。 TRE没有针对这些风险的成熟过程和控制。这是一个复杂的话题,希望所有TRE都会意识到所有风险,或者TRE研究人员已经在AI特定的培训中解决了这些风险是不合理的。 Graimatter已为TRE开发了一套可用的建议,以防止TRES培训的AI模型,以防止额外的风险。这些建议的发展由Graimatter Ukri Dare UK Sprint Research项目资助。我们的建议版本在2022年9月的项目结束时发布。在项目过程中,我们已经确定了许多领域的未来调查领域,以在实践中扩展和测试这些建议。因此,我们希望该文档会随着时间的推移而发展。

TREs are widely, and increasingly used to support statistical analysis of sensitive data across a range of sectors (e.g., health, police, tax and education) as they enable secure and transparent research whilst protecting data confidentiality. There is an increasing desire from academia and industry to train AI models in TREs. The field of AI is developing quickly with applications including spotting human errors, streamlining processes, task automation and decision support. These complex AI models require more information to describe and reproduce, increasing the possibility that sensitive personal data can be inferred from such descriptions. TREs do not have mature processes and controls against these risks. This is a complex topic, and it is unreasonable to expect all TREs to be aware of all risks or that TRE researchers have addressed these risks in AI-specific training. GRAIMATTER has developed a draft set of usable recommendations for TREs to guard against the additional risks when disclosing trained AI models from TREs. The development of these recommendations has been funded by the GRAIMATTER UKRI DARE UK sprint research project. This version of our recommendations was published at the end of the project in September 2022. During the course of the project, we have identified many areas for future investigations to expand and test these recommendations in practice. Therefore, we expect that this document will evolve over time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源