论文标题

有效的分支和结合算法,用于查找三角形约束的2俱乐部

Efficient Branch-and-Bound Algorithms for Finding Triangle-Constrained 2-Clubs

论文作者

Grüttemeier, Niels, Keßler, Philipp Heinrich, Komusiewicz, Christian, Sommer, Frank

论文摘要

在顶点三角2俱乐部问题中,我们获得了一个无向图$ g $,旨在找到最多具有直径为2的$ g $的最大vertex子图,并且每个顶点至少包含在该子级别中的$ \ ell $ triangles中。到目前为止,解决顶点三角2俱乐部的唯一算法依赖于ILP公式[Almeida和Brás,Comput。操作。 res。 2019]。在这项工作中,我们开发了一种组合分支和结合算法,再加上一组数据减少规则,优于现有实现,并能够在几分钟内具有超过100,000个顶点的稀疏现实图形上找到最佳解决方案。我们还将我们的算法扩展到边缘三角2俱乐部问题,其中三角限制在子图的所有边缘都施加。

In the Vertex Triangle 2-Club problem, we are given an undirected graph $G$ and aim to find a maximum-vertex subgraph of $G$ that has diameter at most 2 and in which every vertex is contained in at least $\ell$ triangles in the subgraph. So far, the only algorithm for solving Vertex Triangle 2-Club relies on an ILP formulation [Almeida and Brás, Comput. Oper. Res. 2019]. In this work, we develop a combinatorial branch-and-bound algorithm that, coupled with a set of data reduction rules, outperforms the existing implementation and is able to find optimal solutions on sparse real-world graphs with more than 100,000 vertices in a few minutes. We also extend our algorithm to the Edge Triangle 2-Club problem where the triangle constraint is imposed on all edges of the subgraph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源