论文标题

演示:LE3D:保存隐私的轻巧数据漂移检测框架

Demo: LE3D: A Privacy-preserving Lightweight Data Drift Detection Framework

论文作者

Mavromatis, Ioannis, Khan, Aftab

论文摘要

本文介绍了LE3D;一个新型的数据漂移检测框架,用于保留数据完整性和机密性。 LE3D是一个可普遍的平台,用于评估物联网(IoT)传感器部署中新型漂移检测机制。我们的框架以分布式方式运行,保留数据隐私,同时仍然适应以最少的在线重新配置的新传感器。我们的框架目前支持时间序列IoT数据的多个漂移估计器,并且可以轻松扩展以适应新的数据类型和漂移检测机制。该演示将说明在类似于现实世界的情况下LE3D的功能。

This paper presents LE3D; a novel data drift detection framework for preserving data integrity and confidentiality. LE3D is a generalisable platform for evaluating novel drift detection mechanisms within the Internet of Things (IoT) sensor deployments. Our framework operates in a distributed manner, preserving data privacy while still being adaptable to new sensors with minimal online reconfiguration. Our framework currently supports multiple drift estimators for time-series IoT data and can easily be extended to accommodate new data types and drift detection mechanisms. This demo will illustrate the functionality of LE3D under a real-world-like scenario.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源