论文标题

火星电离层电子密度使用装袋树

Martian Ionosphere Electron Density Prediction Using Bagged Trees

论文作者

Darya, Abdollah Masoud, Alameri, Noora, Shaikh, Muhammad Mubasshir, Fernini, Ilias

论文摘要

几项火星任务提供的火星大气数据的可用性扩大了调查和研究火星电离层状况的机会。因此,电离层模型在响应不同的空间,时间和空间天气条件的响应时,在提高我们对电离层行为的理解方面起着至关重要的作用。这项工作代表了使用机器学习构建火星电离层的电子密度预测模型的初步尝试。该模型的靶向太阳能高峰的电离层范围从70到90度,因此只能利用MARS全球测量师任务的观察结果。根据均方根误差,确定系数和平均绝对误差,比较了不同机器学习方法的性能。包装的回归树方法在所有评估的方法中都表现最好。此外,优化的装袋回归树模型从文献(Miri和Nemars)中胜过其他火星电离层模型,以查找峰值电子密度值,而在根平方误差和平均绝对误差方面,峰值密度高度的高度。

The availability of Martian atmospheric data provided by several Martian missions broadened the opportunity to investigate and study the conditions of the Martian ionosphere. As such, ionospheric models play a crucial part in improving our understanding of ionospheric behavior in response to different spatial, temporal, and space weather conditions. This work represents an initial attempt to construct an electron density prediction model of the Martian ionosphere using machine learning. The model targets the ionosphere at solar zenith ranging from 70 to 90 degrees, and as such only utilizes observations from the Mars Global Surveyor mission. The performance of different machine learning methods was compared in terms of root mean square error, coefficient of determination, and mean absolute error. The bagged regression trees method performed best out of all the evaluated methods. Furthermore, the optimized bagged regression trees model outperformed other Martian ionosphere models from the literature (MIRI and NeMars) in finding the peak electron density value, and the peak density height in terms of root-mean-square error and mean absolute error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源