论文标题
某些紧凑的Lorentzian本地对称空间的完整性
Completeness of certain compact Lorentzian locally symmetric spaces
论文作者
论文摘要
我们表明,如果局部De Rham-Wu分解中的Lorentzian因子是Cahen-Wallach类型,或者最大扁平因子是一维且类似的时间,则紧凑的Lorentzian局部对称空间在地球上完成了地球上的完整。我们的证明使用了Mehidi和Zeghib的最新结果,以及Romero和Sánchez的更早结果。
We show that a compact Lorentzian locally symmetric space is geodesically complete if the Lorentzian factor in the local de Rham-Wu decomposition is of Cahen-Wallach type or if the maximal flat factor is one-dimensional and time-like. Our proof uses a recent result by Mehidi and Zeghib and an earlier result by Romero and Sánchez.