论文标题
引力波回声从奇怪的恒星中的各种状态方程
Gravitational wave echoes from strange stars for various equations of state
论文作者
论文摘要
在GW170817事件中,暂定引力波回声(GWE)的频率约为72美元,Hz $在GW170817活动中的显着性水平为4.2σ$。 GWE可以用作研究超紧凑型恒星物体特征的工具。将最终的超级压缩后对象视为奇怪的恒星,可以计算GWE频率。但是,仅对于那些紧凑型恒星结构的紧凑型恒星结构才能观察到GWES,其紧凑性位于0.33至0.44之间。另外,可以为那些具有光子球体和紧凑性的紧凑型恒星获得GWE,而不是越过Buchdahl的极限半径$ R_ {B} = 9/4M $。光子球是一个位于$ r = 3m $的表面,$ r $是半径,$ m $是超紧凑型物体的总质量。最近使用最简单的MIT袋模型方程(EOS),据报道,奇怪的恒星可以产生具有数十千洛茨的频率的GWE。考虑到这一点,对于一项比较研究,我们通过考虑三种奇怪的恒星Eoss,即,MIT Bag模型,线性和多面性EOSS \ cite {JB}的三种模型来计算与奇怪恒星相关的相应的回声频率。我们发现,多变态EOS不能发射GWE,而MIT袋模型和线性EOSS可以在大约几十千洛茨的频率范围内排放GWE。同样,GWE频率随着袋子常数$ b $的增加而增加,并且随着线性常数$ b $的增加而减小。因此,观察到了GWE频率的模型依赖性。
The tentative Gravitational Wave Echo (GWE) at a frequency of about $72\,Hz$ has been recently claimed at $4.2σ$ significance level in the GW170817 event. GWEs can be used as a tool to study the characteristics of ultra-compact stellar objects. Considering the final ultra-compact, post-merger object as a strange star, the GWE frequency can be calculated. However, GWEs are observed for only those compact stellar structures whose compactness lies in between 0.33 and 0.44. Alternatively, GWE can be obtained for those compact stars which feature a photon sphere and compactness not crossing the Buchdahl's limit radius $R_{B}=9/4M$. A photon sphere is a surface located at $R=3M$, $R$ being the radius and $M$ is the total mass of the ultra-compact object. Recently using the simplest MIT Bag model Equation of State (EoS) it has been reported that strange stars can produce GWEs with frequencies of tens of kilohertz. In view of this, for a comparative study, we have calculated the respective echo frequencies associated with strange stars by considering three models of strange star EoSs, viz., MIT bag model, linear and polytropic EoSs \cite{JB}. We found that, not being too stiff the polytropic EoS can not emit GWE, whereas the MIT Bag model and the linear EoSs can emit GWEs at a frequency range of about tens of kilohertz. Also, GWE frequency increases with the increase in values of bag constant $B$ and decreases with the increasing values of linear constant $b$. So a model-dependent nature of GWE frequencies is observed.