论文标题

在曲线上的符号和正交束的模量空间上切线束的简单性

Simplicity of tangent bundles on the moduli spaces of symplectic and orthogonal bundles over a curve

论文作者

Choe, Insong, Hitching, George H., Hong, Jaehyun

论文摘要

J.-M.Hwang [8]使用了与Hecke曲线相关的最小有理切线的种类,以证明曲线上向量捆绑包的模量上的切线束的简单性。在本文中,我们使用符号和正交Hecke曲线的切线图来证明符号和正交束的类似结果。特别是,我们显示了相关的最低理性切线的非平稳性,这意味着在曲线上符号和正交捆绑包的模量空间上切线束的简单性。我们还表明,对于足够大的属,切线图是用于一般符号或正交束的嵌入。

The variety of minimal rational tangents associated to Hecke curves was used by J.-M.Hwang [8] to prove the simplicity of the tangent bundle on the moduli of vector bundles over a curve. In this paper, we use the tangent maps of the symplectic and orthogonal Hecke curves to prove an analogous result for symplectic and orthogonal bundles. In particular, we show the nondegeneracy of the associated variety of minimal rational tangents, which implies the simplicity of the tangent bundle on the moduli spaces of symplectic and orthogonal bundles over a curve. We also show that for large enough genus, the tangent map is an embedding for a general symplectic or orthogonal bundle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源