论文标题

深成年肺部分割模型对小儿种群的概括性:一项回顾性研究

Generalizability of Deep Adult Lung Segmentation Models to the Pediatric Population: A Retrospective Study

论文作者

Rajaraman, Sivaramakrishnan, Yang, Feng, Zamzmi, Ghada, Xue, Zhiyun, Antani, Sameer

论文摘要

胸部X射线(CXR)中的肺部分割是改善临床决策支持系统中心肺疾病诊断特异性的重要先决条件。当前的肺部分割深度学习模型在CXR数据集上进行了训练和评估,其中主要是从成年人口中捕获的射线照相预测。然而,据报道,从婴儿期到成年期,肺的形状在整个发育阶段都显着差异。这可能会导致与年龄相关的数据域的变化,这将对肺部人群进行培训的模型进行小儿肺部分割时会对肺部分割性能产生不利影响。在这项工作中,我们的目标是(i)分析深成年肺部分割模型对小儿人群的普遍性,并通过阶段,系统的系统方法来提高性能,该方法由CXR特定于特异性的重量初始化,堆叠的乐团和堆叠的合奏组成。为了评估分割性能和概括性,还提出了包括平均肺轮廓距离(MLCD)和平均哈希评分(AHS)组成的新型评估指标,除了多尺度结构相似性指数(MS-SSIM),联合(IOU)的相互作用(IOU),DICE评分,置换率分数,95%Hausdorff距离(HD95),以及平均距离(HD95),以及(HD95)(HD95)(HD95),除了多尺度的结构相似性指数(MS-SSSIM)外(HD95)和平均水平。我们的结果表明,通过我们的方法,跨域概括有显着改善(p <0.05)。这项研究可以作为分析其他医学成像方式和应用的深层分割模型的跨域概括性的范例。

Lung segmentation in chest X-rays (CXRs) is an important prerequisite for improving the specificity of diagnoses of cardiopulmonary diseases in a clinical decision support system. Current deep learning models for lung segmentation are trained and evaluated on CXR datasets in which the radiographic projections are captured predominantly from the adult population. However, the shape of the lungs is reported to be significantly different across the developmental stages from infancy to adulthood. This might result in age-related data domain shifts that would adversely impact lung segmentation performance when the models trained on the adult population are deployed for pediatric lung segmentation. In this work, our goal is to (i) analyze the generalizability of deep adult lung segmentation models to the pediatric population and (ii) improve performance through a stage-wise, systematic approach consisting of CXR modality-specific weight initializations, stacked ensembles, and an ensemble of stacked ensembles. To evaluate segmentation performance and generalizability, novel evaluation metrics consisting of mean lung contour distance (MLCD) and average hash score (AHS) are proposed in addition to the multi-scale structural similarity index measure (MS-SSIM), the intersection of union (IoU), Dice score, 95% Hausdorff distance (HD95), and average symmetric surface distance (ASSD). Our results showed a significant improvement (p < 0.05) in cross-domain generalization through our approach. This study could serve as a paradigm to analyze the cross-domain generalizability of deep segmentation models for other medical imaging modalities and applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源