论文标题

连续和离散的数据同化,对瑞利 - 贝纳德对流的嘈杂观察结果:一项计算研究

Continuous and Discrete Data Assimilation with Noisy Observations for the Rayleigh-Benard Convection: A Computational Study

论文作者

Hammoud, Mohamad Abed El Rahman, LeMaitre, Olivier, Titi, Edriss S., Hoteit, Ibrahim, Knio, Omar

论文摘要

获得模型输出准确的高分辨率表示,对于描述系统动力学至关重要。但是,通常,只有对系统状态的空间和时间上的观察。这些观察结果也可能因噪音而破坏。降尺度是一种过程/方案,其中人们使用粗尺度观测来重建系统状态的高分辨率解决方案。连续数据同化(CDA)是一种最近引入的降尺度算法,它通过使用粗制观测值不断地淡化大型尺度来构建系统状态的越来越精确的表示。我们引入了一个基于CDA的降尺度算法,引入了一个离散的数据同化(DDA)算法,并带有离散的时间裸机。然后,我们研究了CDA和DDA算法的性能,以降低混乱制度中雷利 - 贝纳德对流系统的噪声观察。在这项计算研究中,通过在降低尺度之前用高斯噪声扰动参考溶液来产生一组嘈杂的观察结果。然后,使用各种基于误差和集合的技能得分评估降尺度场。证明CDA溶液比DDA更快地收敛到参考溶液,但造成渐近误差的成本更高。数值结果还表明$ \ ell_2 $错误与CDA和DDA的噪声水平之间存在二次关系。 DDA和CDA的立方和二次依赖性对观测值的空间分辨率的预期误差分别获得。

Obtaining accurate high-resolution representations of model outputs is essential to describe the system dynamics. In general, however, only spatially- and temporally-coarse observations of the system states are available. These observations can also be corrupted by noise. Downscaling is a process/scheme in which one uses coarse scale observations to reconstruct the high-resolution solution of the system states. Continuous Data Assimilation (CDA) is a recently introduced downscaling algorithm that constructs an increasingly accurate representation of the system states by continuously nudging the large scales using the coarse observations. We introduce a Discrete Data Assimilation (DDA) algorithm as a downscaling algorithm based on CDA with discrete-in-time nudging. We then investigate the performance of the CDA and DDA algorithms for downscaling noisy observations of the Rayleigh-Bénard convection system in the chaotic regime. In this computational study, a set of noisy observations was generated by perturbing a reference solution with Gaussian noise before downscaling them. The downscaled fields are then assessed using various error- and ensemble-based skill scores. The CDA solution was shown to converge towards the reference solution faster than that of DDA but at the cost of a higher asymptotic error. The numerical results also suggest a quadratic relationship between the $\ell_2$ error and the noise level for both CDA and DDA. Cubic and quadratic dependences of the DDA and CDA expected errors on the spatial resolution of the observations were obtained, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源