论文标题

与神经网络的多变量集成

Multi-variable Integration with a Neural Network

论文作者

Maître, Daniel, Santos-Mateos, Roi

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this article we present a method for automatic integration of parametric integrals over the unit hypercube using a neural network. The method fits a neural network to the primitive of the integrand using a loss function designed to minimize the difference between multiple derivatives of the network and the function to be integrated. We apply this method to two example integrals resulting from the sector decomposition of a one-loop and two-loop scalar integrals. Our method can achieve per-mil and percent accuracy for these integrals over a range of invariant values. Once the neural network is fitted, the evaluation of the integral is between 40 and 125 times faster than the usual numerical integration method for our examples, and we expect the speed gain to increase with the complexity of the integrand.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源