论文标题
部分可观测时空混沌系统的无模型预测
Essentially finite $G$-torsors
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Let $X$ be a smooth projective curve of genus $g$, defined over an algebraically closed field $k$, and let $G$ be a connected reductive group over $k$. We say that a $G$-torsor is essentially finite if it admits a reduction to a finite group, generalising the notion of essentially finite vector bundles to arbitrary groups $G$. We give a Tannakian interpretation of such torsors, and we prove that all essentially finite $G$-torsors have torsion degree, and that the degree is 0 if $X$ is an elliptic curve. We then study the density of the set of $k$-points of essentially finite $G$-torsors of degree $0$, denoted $M_{G}^{\text{ef},0}$, inside $M_{G}^{\text{ss},0}$, the $k$-points of all semistable degree 0 $G$-torsors. We show that when $g=1$, $M_{G}^{\text{ef}}\subset M_{G}^{\text{ss},0}$ is dense. When $g>1$ and when $\text{char}(k)=0$, we show that for any reductive group of semisimple rank 1, $M_{G}^{\text{ef},0}\subset M_{G}^{\text{ss},0}$ is not dense.