论文标题

在野外使用仅闪光提示的稳健反射去除

Robust Reflection Removal with Flash-only Cues in the Wild

论文作者

Lei, Chenyang, Jiang, Xudong, Chen, Qifeng

论文摘要

我们提出了一种简单而有效的无反射提示,以从一对闪光灯和环境(无闪存)图像中删除可靠的反射。无反射提示利用了通过从原始数据空间中的相应闪存图像中减去环境图像获得的仅闪存图像。仅闪光图像等于在黑暗环境中拍摄的图像,只有闪光灯。此仅闪光图像在视觉上不含反射,因此可以提供可靠的线索来推断环境图像中的反射。由于仅闪光图像通常具有工件,因此我们进一步提出了一个专用模型,该模型不仅利用了无反射提示,而且还避免了引入文物,这有助于准确估计反射和传输。我们对具有各种反射类型的现实世界图像的实验证明了我们模型的有效性,无反射的仅闪光提示:我们的模型在PSNR中超过5.23db的最先进的反射删除方法优于最先进的反射删除方法。我们扩展了手持摄影的方法,以解决闪光灯和无闪存对之间的错位。借助未对准的培训数据和对齐模块,我们的Aligned模型在未对准的数据集上的PSNR中以上版本的表现超过3.19db。我们还使用线性RGB图像作为训练数据研究。我们的源代码和数据集可在https://github.com/chenyanglei/flash-reflection-removal上公开获取。

We propose a simple yet effective reflection-free cue for robust reflection removal from a pair of flash and ambient (no-flash) images. The reflection-free cue exploits a flash-only image obtained by subtracting the ambient image from the corresponding flash image in raw data space. The flash-only image is equivalent to an image taken in a dark environment with only a flash on. This flash-only image is visually reflection-free and thus can provide robust cues to infer the reflection in the ambient image. Since the flash-only image usually has artifacts, we further propose a dedicated model that not only utilizes the reflection-free cue but also avoids introducing artifacts, which helps accurately estimate reflection and transmission. Our experiments on real-world images with various types of reflection demonstrate the effectiveness of our model with reflection-free flash-only cues: our model outperforms state-of-the-art reflection removal approaches by more than 5.23dB in PSNR. We extend our approach to handheld photography to address the misalignment between the flash and no-flash pair. With misaligned training data and the alignment module, our aligned model outperforms our previous version by more than 3.19dB in PSNR on a misaligned dataset. We also study using linear RGB images as training data. Our source code and dataset are publicly available at https://github.com/ChenyangLEI/flash-reflection-removal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源