论文标题
关于FDRL代理的专业化,可扩展和分布式6G运行编排编排
On the Specialization of FDRL Agents for Scalable and Distributed 6G RAN Slicing Orchestration
论文作者
论文摘要
网络切片使多个虚拟网络可以进行实例化和自定义,以满足5G和超越网络部署的异质用例要求。但是,由于集中式控制器需要对不同网络域上的资源可用性和消费,当今考虑许多切片时,当今可用的大多数解决方案都面临可扩展性问题。为了应对这一挑战,我们设计了一个分层体系结构,以联合方式管理网络切片资源。在深度强化学习(DRL)方案和开放式跑步(O-RAN)范式的快速发展的驱动下,我们提出了一组动态放置在无线电访问网络(RAN)中的交通感知的本地决策代理(DAS)。这些联合决策实体根据基础流量的长期动态来量身定制其资源分配政策,定义了专门的集群,从而可以更快地培训和交流间接费用减少。确实,在流量感知的代理选择算法的帮助下,我们提出的联合DRL方法通过快速对最终用户的移动性模式做出反应并减少与集中式控制器的昂贵相互作用,从而提供了比基准解决方案更高的资源效率。
Network slicing enables multiple virtual networks to be instantiated and customized to meet heterogeneous use case requirements over 5G and beyond network deployments. However, most of the solutions available today face scalability issues when considering many slices, due to centralized controllers requiring a holistic view of the resource availability and consumption over different networking domains. In order to tackle this challenge, we design a hierarchical architecture to manage network slices resources in a federated manner. Driven by the rapid evolution of deep reinforcement learning (DRL) schemes and the Open RAN (O-RAN) paradigm, we propose a set of traffic-aware local decision agents (DAs) dynamically placed in the radio access network (RAN). These federated decision entities tailor their resource allocation policy according to the long-term dynamics of the underlying traffic, defining specialized clusters that enable faster training and communication overhead reduction. Indeed, aided by a traffic-aware agent selection algorithm, our proposed Federated DRL approach provides higher resource efficiency than benchmark solutions by quickly reacting to end-user mobility patterns and reducing costly interactions with centralized controllers.