论文标题

非小细胞肺癌预后的多模式学习

Multimodal Learning for Non-small Cell Lung Cancer Prognosis

论文作者

Wu, Yujiao, Wang, Yaxiong, Huang, Xiaoshui, Yang, Fan, Ling, Sai Ho, Su, Steven Weidong

论文摘要

本文着重于肺癌生存时间分析的任务。尽管近年来在这个问题上取得了很多进展,但现有方法的性能仍然远非令人满意。肺癌的传统和一些基于深度学习的生存时间分析主要基于文本临床信息,例如分期,年龄,组织学等。与预测单一模态的现有方法不同,我们观察到人类临床医生通常接受多模式数据,例如文本临床数据和视觉扫描以估计生存时间。在这项工作中,我们为生存分析网络提供了一个名为Lite-Prosenet的智能跨模式网络,该网络模拟了人类的决策方式。使用来自癌症成像档案(TCIA)的422名NSCLC患者的数据进行了广泛的实验。结果表明,我们的Lite-Prosenet的表现再次优于所有比较方法,并以89.3%的一致性达到了新的最新方法。该代码将公开可用。

This paper focuses on the task of survival time analysis for lung cancer. Although much progress has been made in this problem in recent years, the performance of existing methods is still far from satisfactory. Traditional and some deep learning-based survival time analyses for lung cancer are mostly based on textual clinical information such as staging, age, histology, etc. Unlike existing methods that predicting on the single modality, we observe that a human clinician usually takes multimodal data such as text clinical data and visual scans to estimate survival time. Motivated by this, in this work, we contribute a smart cross-modality network for survival analysis network named Lite-ProSENet that simulates a human's manner of decision making. Extensive experiments were conducted using data from 422 NSCLC patients from The Cancer Imaging Archive (TCIA). The results show that our Lite-ProSENet outperforms favorably again all comparison methods and achieves the new state of the art with the 89.3% on concordance. The code will be made publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源