论文标题

基于贝叶斯优化的Xgboost集合

Multipath Interference Suppression of Amplitude-Modulated Continuous Wave Scanning LiDAR Based on Bayesian-Optimized XGBoost Ensemble

论文作者

Lee, Sunghyun, Lim, Yoonseop, Kwon, Wookhyeon, Park, Yonghwa

论文摘要

本文提出了一种基于贝叶斯优化的极端梯度增强(XGBOOST)集合的新型多径干扰(MPI)抑制算法,以减少振幅模拟连续波(AMCW)扫描光检测和范围(LIDAR)中MPI误差。与本文形成鲜明对比的是,许多先前的研究作品都集中在传统的AMCW飞行时间(TOF)传感器中使用闪光灯型照明源的抑制。但是,由于照明源的固有限制和缺乏MPI数据,这些先前作品的减轻MPI误差仍然保持CM规模。同时,由于以前几乎没有用于同轴类型AMCW扫描激光雷达的作品,因此这种LIDAR中的MPI仍未得到验证。为了实现有关上述问题的MM级MPI误差,本文提出了基于贝叶斯优化的Xgboost集合的MPI误差校正算法及其在同轴类型AMCW扫描激光雷达中的实现。为了训练XGBoost集合,本文使用了自定义模拟生成的MPI合成数据集。根据验证结果,在仿真数据集中,贝叶斯优化的XGBoost最初可以将最初9.8 mm的MPI误差的平均绝对误差(MAE)降低到2 mm。这种精确的MPI缓解结果也可以在真实的对象场景中维护。具体而言,与公共数据集相似的测量条件下MPI错误的MAE降低到2.8 mm,与其他先前的作品相比,这非常低。

This paper proposes a novel multipath interference (MPI) suppression algorithm based on Bayesian-optimized extreme gradient boosting (XGBoost) ensemble to reduce MPI error in amplitude-modulated continuous wave (AMCW) scanning light detection and ranging (LiDAR). Contrast to this paper, many previous research works have focused on the MPI suppression in conventional AMCW time-of-flight (ToF) sensors with flash type illumination sources. However, the mitigated MPI error of these previous works still remains cm-scale due to the inherent limitation of illumination source and lack of MPI data. Meanwhile, since there exist few previous works for coaxial type AMCW scanning LiDAR, the MPI in such LiDAR still has not been validated. To achieve mm-scale MPI error mitigation regarding aforementioned issues, this paper proposes a MPI error correction algorithm based on Bayesian-optimized XGBoost ensemble and its implementation in coaxial type AMCW scanning LiDAR. To train the XGBoost ensemble, the MPI synthetic dataset generated by customized simulation is used in this paper. According to validation results, the mean absolute error (MAE) of MPI error originally 9.8 mm can be reduced to less than 2 mm by Bayesian-optimized XGBoost in simulation dataset. Such precise MPI mitigation results are also maintained in real object scenes. Specifically, the MAE of MPI error in measurement condition similar with public dataset is reduced to 2.8 mm, which is extremely low compared to other previous works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源