论文标题

通过分布式能源资源的联合DRL方法用于智能微网络能源控制

A Federated DRL Approach for Smart Micro-Grid Energy Control with Distributed Energy Resources

论文作者

Rezazadeh, Farhad, Bartzoudis, Nikolaos

论文摘要

智能网格中物联网(IoT)和智能电表设备的流行率正在为测量和分析功耗模式提供关键支持。这种方法使最终用户能够在市场上发挥作用,并随后促进碳足迹减轻碳足迹和对公用电网的负担。由房屋可再生能源(RERS)产生的能源交易盈余和外部网络(主要网格)供应短缺的协调是必要的。本文提出了一种分层体系结构,以管理多个智能建筑中的能量,以分布式方式利用了以动态负载为动态负载的联合深层强化学习(FDRL)。在开发的基于FDRL的框架的背景下,在本地建筑能源管理系统(BEMS)中托管的每个代理都会训练当地的深入强化学习(DRL)模型,并以模型超参数的形式与能源管理系统(EMS)中联邦层的模型超级标准的形式分享。使用一个EMS和多达二十个配备光伏(PV)系统和电池的智能房屋进行仿真研究。这种迭代培训方法使提议的离散的软演员批评者(SAC)能够汇总收集的知识以加快整体学习程序并降低成本和二氧化碳排放,而联邦方法可以减轻隐私漏洞。数值结果证实了在不同的白天,负载和温度下提出的框架的性能。

The prevalence of the Internet of things (IoT) and smart meters devices in smart grids is providing key support for measuring and analyzing the power consumption patterns. This approach enables end-user to play the role of prosumers in the market and subsequently contributes to diminish the carbon footprint and the burden on utility grids. The coordination of trading surpluses of energy that is generated by house renewable energy resources (RERs) and the supply of shortages by external networks (main grid) is a necessity. This paper proposes a hierarchical architecture to manage energy in multiple smart buildings leveraging federated deep reinforcement learning (FDRL) with dynamic load in a distributed manner. Within the context of the developed FDRL-based framework, each agent that is hosted in local building energy management systems (BEMS) trains a local deep reinforcement learning (DRL) model and shares its experience in the form of model hyperparameters to the federation layer in the energy management system (EMS). Simulation studies are conducted using one EMS and up to twenty smart houses that are equipped with photovoltaic (PV) systems and batteries. This iterative training approach enables the proposed discretized soft actor-critic (SAC) agents to aggregate the collected knowledge to expedite the overall learning procedure and reduce costs and CO2 emissions, while the federation approach can mitigate privacy breaches. The numerical results confirm the performance of the proposed framework under different daytime periods, loads, and temperatures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源