论文标题

使用集合覆盖物生成整体坚定分析的数据库

Using Set Covering to Generate Databases for Holistic Steganalysis

论文作者

Abecidan, Rony, Itier, Vincent, Boulanger, Jérémie, Bas, Patrick, Pevný, Tomáš

论文摘要

在操作框架内,隐射击仪使用的覆盖物可能来自不同的传感器和不同的处理管道,而研究人员用于培训其stemansisy模型。因此,在分布外覆盖范围方面,性能差距是不可避免的,这是一个极为频繁的场景,称为封面源不匹配(CSM)。在这里,我们探索了处理管道的网格,以研究CSM的起源,以更好地理解它并更好地解决它。设定覆盖的贪婪算法用于选择代表性管道最大程度地减少了集合中的代表和管道之间的最大遗憾。我们的主要贡献是一种产生能够解决操作CSM的相关基础的方法。实验验证强调,对于给定数量的培训样本,我们的集合覆盖选择比选择随机管道或使用所有可用管道更好。我们的分析还表明,参数作为降压,锐化和下采样对于培养多样性非常重要。最后,用于经典和野生数据库的不同基准显示了提取的数据库的良好概括属性。 github.com/ronyabecidan/holisticsteganalysiswithsetcovering可以找到其他资源。

Within an operational framework, covers used by a steganographer are likely to come from different sensors and different processing pipelines than the ones used by researchers for training their steganalysis models. Thus, a performance gap is unavoidable when it comes to out-of-distributions covers, an extremely frequent scenario called Cover Source Mismatch (CSM). Here, we explore a grid of processing pipelines to study the origins of CSM, to better understand it, and to better tackle it. A set-covering greedy algorithm is used to select representative pipelines minimizing the maximum regret between the representative and the pipelines within the set. Our main contribution is a methodology for generating relevant bases able to tackle operational CSM. Experimental validation highlights that, for a given number of training samples, our set covering selection is a better strategy than selecting random pipelines or using all the available pipelines. Our analysis also shows that parameters as denoising, sharpening, and downsampling are very important to foster diversity. Finally, different benchmarks for classical and wild databases show the good generalization property of the extracted databases. Additional resources are available at github.com/RonyAbecidan/HolisticSteganalysisWithSetCovering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源