论文标题
图形的不规则集合的度量平均尺寸
Metric mean dimension of irregular sets for maps with shadowing
论文作者
论文摘要
我们研究具有阴影属性的动态系统中$φ$ irrorgular set $i_φ(f)$的度量平均尺寸。特别是我们证明,对于包含链条复发类$ y $的动态系统,拓扑熵的值以及集合$i_φ(f)\ cap b(y,\ varepsilon)\ cap cr(f)$的下部和上部度量平均维度值的值与下面的$ y $ y $相应的值界定。
We study the metric mean dimension of $Φ$-irregular set $I_Φ(f)$ in dynamical systems with the shadowing property. In particular we prove that for dynamical systems with shadowing containing a chain recurrent class $Y$, the values of topological entropy together with the values of lower and upper metric mean dimension of the set $I_Φ(f)\cap B(Y,\varepsilon)\cap CR(f)$ are bounded from below by the respective values for class $Y$.