论文标题
动态权重启用了物理信息的神经网络,用于模拟受污染的含水层中工程纳米粒子的移动性
Dynamic weights enabled Physics-Informed Neural Network for simulating the mobility of Engineered Nano-particles in a contaminated aquifer
论文作者
论文摘要
全球许多受污染的地下水面需要采取积极的补救策略,以恢复自然环境条件和当地生态系统。工程化的纳米颗粒(ENP)已成为地下水污染物原位降解的有效反应剂。尽管这些ENP的性能在实验室规模上非常有前途,但它们在实际野外病例条件下的应用仍然有限。 ENP的复杂运输和保留机制阻碍了有效的修复策略的发展。因此,高度需要一种理解ENP的运输和保留行为的预测工具。文献中现有的工具以数值模拟器为主,在存在稀疏数据集的情况下,灵活性和准确性有限。这项工作使用动态的,具有体重的物理知识神经网络(DW-PINN)框架来对含水层内的纳米粒子行为进行建模。正向模型的结果证明了DW-PINN在准确预测ENPS迁移率方面的有效能力。模型验证步骤表明,使用DW-PINN的预测ENPS浓度的相对均方根误差(MSE)收敛到最小值$ 1.3 {e^{ - 5}} $。在随后的步骤中,反向模型的结果以合理的精度估算了ENPS移动性的管理参数。该研究证明了该工具为制定有效的地下水补救策略提供预测见解的能力。
Numerous polluted groundwater sites across the globe require an active remediation strategy to restore natural environmental conditions and local ecosystem. The Engineered Nano-particles (ENPs) have emerged as an efficient reactive agent for the in-situ degradation of groundwater contaminants. While the performance of these ENPs has been highly promising on the laboratory scale, their application in real field case conditions is still limited. The complex transport and retention mechanisms of ENPs hinder the development of an efficient remediation strategy. Therefore, a predictive tool for understanding the transport and retention behavior of ENPs is highly required. The existing tools in the literature are dominated with numerical simulators, which have limited flexibility and accuracy in the presence of sparse datasets. This work uses a dynamic, weight-enabled Physics-Informed Neural Network (dw-PINN) framework to model the nano-particle behavior within an aquifer. The result from the forward model demonstrates the effective capability of dw-PINN in accurately predicting the ENPs mobility. The model verification step shows that the relative mean square error (MSE) of the predicted ENPs concentration using dw-PINN converges to a minimum value of $1.3{e^{-5}}$. In the subsequent step, the result from the inverse model estimates the governing parameters of ENPs mobility with reasonable accuracy. The research demonstrates the tool's capability to provide predictive insights for developing an efficient groundwater remediation strategy.