论文标题

从脱氧扩散到deno的马尔可夫模型

From Denoising Diffusions to Denoising Markov Models

论文作者

Benton, Joe, Shi, Yuyang, De Bortoli, Valentin, Deligiannidis, George, Doucet, Arnaud

论文摘要

脱氧扩散是表现出色的经验表现的最先进的生成模型。它们通过将数据分布扩散到高斯分布中,然后学习扭转这个尖叫过程以获得合成数据点。脱氧扩散依赖于使用得分匹配的NONISE数据密度的对数衍生物的近似值。当人们只能从先前和可能性中采样时,此类模型也可以用于执行近似后仿真。我们提出了一个统一的框架,将这种方法推广到广泛的空间,并导致得分匹配的原始扩展。我们在各种应用程序上说明了最终的模型。

Denoising diffusions are state-of-the-art generative models exhibiting remarkable empirical performance. They work by diffusing the data distribution into a Gaussian distribution and then learning to reverse this noising process to obtain synthetic datapoints. The denoising diffusion relies on approximations of the logarithmic derivatives of the noised data densities using score matching. Such models can also be used to perform approximate posterior simulation when one can only sample from the prior and likelihood. We propose a unifying framework generalising this approach to a wide class of spaces and leading to an original extension of score matching. We illustrate the resulting models on various applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源