论文标题

基于机器学习的不确定性量化机翼的湍流模型

Machine learning based uncertainty quantification of turbulence model for airfoils

论文作者

Chu, Minghan, Qian, Weicheng

论文摘要

基于雷诺的Navier-Stokes(RANS)的过渡模型广泛用于航空航天应用中,但由于Boussinesq湍流粘度假设而遭受了不准确的损失。特征空间扰动方法可以通过向其预测的雷诺应力来估计rans模型的准确性。但是,缺少可靠的方法来选择注射扰动的强度,而现有的机器学习模型通常很复杂且渴望数据。我们检查了两个轻加权的机器学习模型,以帮助选择注射的扰动的强度,以估算在Selig-Donovan 7003机翼上过渡到湍流的流量的不确定性。一方面,我们检查了多项式回归,以构建具有特征值扰动增强的标记函数,以估计预测皮肤摩擦系数结合的不确定性。另一方面,我们训练了卷积神经网络(CNN),以预测高保真湍流动能。训练有素的CNN充当标记函数,可以集成到本征空间扰动方法中以量化不确定性。我们的发现表明,轻加权机器学习模型可以有效构建适当的标记功能,该功能有望丰富现有的特征空间扰动方法,以更量化不确定性。

Reynolds-averaged Navier-Stokes (RANS)-based transition modeling is widely used in aerospace applications but suffers inaccuracies due to the Boussinesq turbulent viscosity hypothesis. The eigenspace perturbation method can estimate the accuracy of a RANS model by injecting perturbations to its predicted Reynolds stresses. However, there lacks a reliable method for choosing the strength of the injected perturbation, while existing machine learning models are often complex and data craving. We examined two light-weighted machine learning models to help select the strength of the injected perturbation for estimating the RANS uncertainty of flows undergoing the transition to turbulence over a Selig-Donovan 7003 airfoil. On the one hand, we examined polynomial regression to construct a marker function augmented with eigenvalue perturbations to estimate the uncertainty bound for the predicted skin friction coefficient. On the other hand, we trained a convolutional neural network (CNN) to predict high-fidelity turbulence kinetic energy. The trained CNN acts as a marker function that can be integrated into the eigenspace perturbation method to quantify the RANS uncertainty. Our findings suggest that the light-weighted machine learning models are effective in constructing an appropriate marker function that is promising to enrich the existing eigenspace perturbation method to quantify the RANS uncertainty more precisely.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源