论文标题
地图集级细胞类型转移的不确定性定量
Uncertainty Quantification for Atlas-Level Cell Type Transfer
论文作者
论文摘要
单细胞参考图像是使用单细胞基因组学捕获器官内细胞异质性的大型细胞水平图。鉴于它们的大小和细胞多样性,这些地图酶是将细胞类型标签传输到新数据集的高质量培训数据。但是,由于测量技术,实验室细节和更一般的批处理效应,这种标签转移必须对基因表达的结构域移位具有鲁棒性。这需要对细胞类型预测提供不确定性估计的方法,以确保正确解释。在这里,我们首次引入了单细胞参考图像中的细胞类型分类的不确定性定量方法。我们基准了四个模型类,并表明目前使用的模型缺乏校准,鲁棒性和可操作的不确定性得分。此外,我们演示了如何更适合于在Atlas级级细胞类型转移的环境中更适合检测未见细胞类型的模型。
Single-cell reference atlases are large-scale, cell-level maps that capture cellular heterogeneity within an organ using single cell genomics. Given their size and cellular diversity, these atlases serve as high-quality training data for the transfer of cell type labels to new datasets. Such label transfer, however, must be robust to domain shifts in gene expression due to measurement technique, lab specifics and more general batch effects. This requires methods that provide uncertainty estimates on the cell type predictions to ensure correct interpretation. Here, for the first time, we introduce uncertainty quantification methods for cell type classification on single-cell reference atlases. We benchmark four model classes and show that currently used models lack calibration, robustness, and actionable uncertainty scores. Furthermore, we demonstrate how models that quantify uncertainty are better suited to detect unseen cell types in the setting of atlas-level cell type transfer.