论文标题
Shasta:3D多对象跟踪的建模形状和时空亲和力
ShaSTA: Modeling Shape and Spatio-Temporal Affinities for 3D Multi-Object Tracking
论文作者
论文摘要
多对象跟踪是任何机器人系统的基石能力。跟踪的质量在很大程度上取决于所使用的检测器的质量。在许多应用(例如自动驾驶汽车)中,比过度检测物体更可取,以避免由于遗漏的检测而造成灾难性的结果。结果,当前的最新3D检测器产生高率的假阳性率,以确保较少的假阴性。通过使数据关联和跟踪生命周期管理更具挑战性,这可能会对跟踪产生负面影响。此外,由于诸如遮挡之类的困难场景,偶尔会出现错误的阴性检测,会损害跟踪性能。为了在统一的框架中解决这些问题,我们建议在连续框架中学习轨道和检测之间的形状和时空亲和力。我们的亲和力提供了一种概率匹配,可导致稳健的数据关联,跟踪生命周期管理,假阳性消除,假阴性传播和顺序轨道置信度的完善。尽管过去的3D MOT方法涉及此问题域中组件的子集,但我们提供了第一个独立的框架,该框架解决了3D MOT问题的所有这些方面。我们在Nuscenes跟踪基准测试标准上进行定量评估我们的方法,在该基准测试基准中,我们使用CenterPoint检测到了仅激光雷达的跟踪器中的第一名。我们的方法估算了准确和精确的轨道,同时减少了假阳性和假阴性轨道的总数,并增加了真实阳性轨道的数量。我们通过5个指标分析了我们的性能,对我们的方法进行了全面概述,以表明我们的跟踪框架如何影响自动移动代理的最终目标。我们还提出了消融实验和定性结果,这些实验证明了我们在复杂方案中的框架能力。
Multi-object tracking is a cornerstone capability of any robotic system. The quality of tracking is largely dependent on the quality of the detector used. In many applications, such as autonomous vehicles, it is preferable to over-detect objects to avoid catastrophic outcomes due to missed detections. As a result, current state-of-the-art 3D detectors produce high rates of false-positives to ensure a low number of false-negatives. This can negatively affect tracking by making data association and track lifecycle management more challenging. Additionally, occasional false-negative detections due to difficult scenarios like occlusions can harm tracking performance. To address these issues in a unified framework, we propose to learn shape and spatio-temporal affinities between tracks and detections in consecutive frames. Our affinity provides a probabilistic matching that leads to robust data association, track lifecycle management, false-positive elimination, false-negative propagation, and sequential track confidence refinement. Though past 3D MOT approaches address a subset of components in this problem domain, we offer the first self-contained framework that addresses all these aspects of the 3D MOT problem. We quantitatively evaluate our method on the nuScenes tracking benchmark where we achieve 1st place amongst LiDAR-only trackers using CenterPoint detections. Our method estimates accurate and precise tracks, while decreasing the overall number of false-positive and false-negative tracks and increasing the number of true-positive tracks. We analyze our performance with 5 metrics, giving a comprehensive overview of our approach to indicate how our tracking framework may impact the ultimate goal of an autonomous mobile agent. We also present ablative experiments and qualitative results that demonstrate our framework's capabilities in complex scenarios.