论文标题

通过三元对比度学习减轻开放知识图的稀疏性

Alleviating Sparsity of Open Knowledge Graphs with Ternary Contrastive Learning

论文作者

Li, Qian, Joty, Shafiq, Wang, Daling, Feng, Shi, Zhang, Yifei

论文摘要

非亲本结构的形式知识和粗糙度的稀疏性使稀疏问题在开放知识图(OpenKGS)中尤为突出。由于稀疏的链接,很难为几杆实体学习有效表示。我们假设通过引入负样本,在这种情况下,对比度学习(CL)的表述可能是有益的。但是,现有的CL方法将kg三重态建模为实体的二进制对象,忽略了关系引导的三元传播模式,它们太通用了,即它们忽略了零射击,几乎没有射击,几乎没有射击和同义词出现的问题。为了解决这个问题,我们提出了TernaryCl,这是一个基于头部,关系和尾巴之间三元传播模式的CL框架。 TernaryCl设计与我的三元判别特征与负面实体和关系构成对比的实体和对比关系,引入了对比度自我,以帮助零和少数弹射实体学习区分性特征,模型同义词的对比同义词,以及从多个路径中汇总的对比度融合以汇总图形特征。基准上的广泛实验表明,三元元优于最先进的模型。

Sparsity of formal knowledge and roughness of non-ontological construction make sparsity problem particularly prominent in Open Knowledge Graphs (OpenKGs). Due to sparse links, learning effective representation for few-shot entities becomes difficult. We hypothesize that by introducing negative samples, a contrastive learning (CL) formulation could be beneficial in such scenarios. However, existing CL methods model KG triplets as binary objects of entities ignoring the relation-guided ternary propagation patterns and they are too generic, i.e., they ignore zero-shot, few-shot and synonymity problems that appear in OpenKGs. To address this, we propose TernaryCL, a CL framework based on ternary propagation patterns among head, relation and tail. TernaryCL designs Contrastive Entity and Contrastive Relation to mine ternary discriminative features with both negative entities and relations, introduces Contrastive Self to help zero- and few-shot entities learn discriminative features, Contrastive Synonym to model synonymous entities, and Contrastive Fusion to aggregate graph features from multiple paths. Extensive experiments on benchmarks demonstrate the superiority of TernaryCL over state-of-the-art models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源