论文标题
通过逐步公平限制的强化学习
Reinforcement Learning with Stepwise Fairness Constraints
论文作者
论文摘要
AI方法用于社会重要的环境中,从信用到就业再到住房,至关重要的是,关于算法决策的公平性至关重要。此外,许多设置都是动态的,人口对顺序决策政策做出响应。我们通过逐步公平的限制介绍了增强学习(RL)的研究,需要在每个时间步骤中进行群体公平。我们的重点是表个性情节RL,我们为违反政策的最佳性和公平性提供了强大的理论保证学习算法。我们的框架提供了有用的工具来研究顺序设置中公平性约束的影响,并在RL中提出了新的挑战。
AI methods are used in societally important settings, ranging from credit to employment to housing, and it is crucial to provide fairness in regard to algorithmic decision making. Moreover, many settings are dynamic, with populations responding to sequential decision policies. We introduce the study of reinforcement learning (RL) with stepwise fairness constraints, requiring group fairness at each time step. Our focus is on tabular episodic RL, and we provide learning algorithms with strong theoretical guarantees in regard to policy optimality and fairness violation. Our framework provides useful tools to study the impact of fairness constraints in sequential settings and brings up new challenges in RL.