论文标题
普遍的同义和通勤原则
Generalised homotopy and commutativity principle
论文作者
论文摘要
在本文中,我们研究了特殊$ n \ times n $线性(分别符号)矩阵的动作,该矩阵与右逆转$ n \ times m $矩阵上的身份均具有同型。我们还证明,$ \ rm {o} _ {2n}(r [x])$的换向子子组为local Ring $ r $ a $ \ frac {1} {1} {2} {2} {2} {2} \ in R $ in r $ and $ n \ geq 3的本地环$ r $是两个稳定的基本正交。
In this paper, we study the action of special $n\times n $ linear (resp. symplectic) matrices which are homotopic to identity on the right invertible $n\times m$ matrices. We also prove that the commutator subgroup of $\rm{O}_{2n}(R[X])$ is two stably elementary orthogonal for a local ring $R$ with $\frac{1}{2}\in R$ and $n\geq 3.$