论文标题
通过量子机学习,在平面波中的一维分子波函数的分辨率增强
Resolution enhancement of one-dimensional molecular wavefunctions in plane-wave basis via quantum machine learning
论文作者
论文摘要
超分辨率是图像处理中的一种机器学习技术,该技术从低分辨率图像中生成高分辨率图像。受这种方法的启发,我们进行了量子机学习的数值实验,该实验在平面波的基础上采用了低分辨率(低平面波截止)的一颗粒子分子波构函数,并在虚拟的一维系统中产生高分辨率(高平面波能量截止),并研究了不同学习模型的性能。我们表明,受过训练的模型可以产生比简单线性插值相对于地面波形具有更高忠诚度值的波形,并且可以通过在ANSATZ中包含数据依赖性信息来改进结果。另一方面,当前方法的准确性在训练数据集中未包含的电子配置中计算出的波形而恶化。我们还讨论了这种方法对多体电子波函数的概括。
Super-resolution is a machine-learning technique in image processing which generates high-resolution images from low-resolution images. Inspired by this approach, we perform a numerical experiment of quantum machine learning, which takes low-resolution (low plane-wave energy cutoff) one-particle molecular wavefunctions in plane-wave basis as input and generates high-resolution (high plane-wave energy cutoff) wavefunctions in fictitious one-dimensional systems, and study the performance of different learning models. We show that the trained models can generate wavefunctions having higher fidelity values with respect to the ground-truth wavefunctions than a simple linear interpolation, and the results can be improved both qualitatively and quantitatively by including data-dependent information in the ansatz. On the other hand, the accuracy of the current approach deteriorates for wavefunctions calculated in electronic configurations not included in the training dataset. We also discuss the generalization of this approach to many-body electron wavefunctions.