论文标题

绘制拓扑激光模式相图的机器学习方法

A machine learning approach to drawing phase diagrams of topological lasing modes

论文作者

Wong, Stephan, Olthaus, Jan, Bracht, Thomas K., Reiter, Doris E., Oh, Sang Soon

论文摘要

识别阶段并分析动态状态的稳定性是在各种物理系统中出现的无处不在的重要问题。但是,在高维和大参数空间中绘制相图仍然具有挑战性。在这里,我们提出了一种数据驱动的方法,以得出拓扑绝缘体激光器中的激光模式的相图。该分类基于通过速率方程的数值整合获得的拓扑模式的时间行为。使用了半监督的学习方法,并构建了自适应库,以区分生成的参数空间中存在的不同拓扑模式。提出的方法成功区分了具有饱和增益的Su-Schrieffer-Heeger(SSH)晶格中不同的拓扑阶段。这证明了对拓扑阶段进行分类的可能性,而无需对系统的专业知识,并可能使拓扑绝缘剂激光器通过反向发动机提供有价值的洞察力。

Identifying phases and analyzing the stability of dynamic states are ubiquitous and important problems which appear in various physical systems. Nonetheless, drawing a phase diagram in high-dimensional and large parameter spaces has remained challenging. Here, we propose a data-driven method to derive the phase diagram of lasing modes in topological insulator lasers. The classification is based on the temporal behaviour of the topological modes obtained via numerical integration of the rate equation. A semi-supervised learning method is used and an adaptive library is constructed in order to distinguish the different topological modes present in the generated parameter space. The proposed method successfully distinguishes the different topological phases in the Su-Schrieffer-Heeger (SSH) lattice with saturable gain.This demonstrates the possibility of classifying the topological phases without needing for expert knowledge of the system and may give valuable insight into the fundamental physics of topological insulator lasers via reverse engineering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源