论文标题
MP-Seiznet:使用EEG进行癫痫发作类型分类的多路径CNN BI-LSTM网络
MP-SeizNet: A Multi-Path CNN Bi-LSTM Network for Seizure-Type Classification Using EEG
论文作者
论文摘要
癫痫发作类型鉴定对于癫痫患者的治疗和管理至关重要。但是,这是一个艰难的过程,它是耗时和劳动力密集的过程。随着机器学习算法的发展,自动诊断系统有可能加速分类过程,提醒患者并支持医生做出快速准确的决定。在本文中,我们提出了一个新型的多路径癫痫发作型分类深度学习网络(MP-Seiznet),该网络由卷积神经网络(CNN)和具有注意机制的双向长期短期记忆神经网络(BI-LSTM)组成。这项研究的目的是仅使用脑电图(EEG)数据对特定类型的癫痫发作进行分类,包括复杂的部分,简单的部分,缺失,补品和滋补性癫痫发作。 EEG数据以两种不同的表示形式馈送给我们提出的模型。 CNN采用从EEG信号中提取的基于小波的功能,而BI-LSTM则使用RAW EEG信号馈送,以使我们的MP-Seiznet共同从癫痫发作数据的不同表示中学习,以进行更准确的信息学习。拟议的MP-Seiznet使用最大的脑电图癫痫数据库,Temple University Hospital EEG癫痫发作语料库进行了评估。我们使用三倍交叉验证和癫痫发作数据评估了我们提出的模型,并使用五倍的交叉验证评估了F1分别达到87.6%和98.1%的F1分数。
Seizure type identification is essential for the treatment and management of epileptic patients. However, it is a difficult process known to be time consuming and labor intensive. Automated diagnosis systems, with the advancement of machine learning algorithms, have the potential to accelerate the classification process, alert patients, and support physicians in making quick and accurate decisions. In this paper, we present a novel multi-path seizure-type classification deep learning network (MP-SeizNet), consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism. The objective of this study was to classify specific types of seizures, including complex partial, simple partial, absence, tonic, and tonic-clonic seizures, using only electroencephalogram (EEG) data. The EEG data is fed to our proposed model in two different representations. The CNN was fed with wavelet-based features extracted from the EEG signals, while the Bi-LSTM was fed with raw EEG signals to let our MP-SeizNet jointly learns from different representations of seizure data for more accurate information learning. The proposed MP-SeizNet was evaluated using the largest available EEG epilepsy database, the Temple University Hospital EEG Seizure Corpus, TUSZ v1.5.2. We evaluated our proposed model across different patient data using three-fold cross-validation and across seizure data using five-fold cross-validation, achieving F1 scores of 87.6% and 98.1%, respectively.