论文标题
一般2d $ s_n $ orbifold cfts的分数形式的后代和相关器大$ n $
Fractional Conformal Descendants and Correlators in General 2D $S_N$ Orbifold CFTs at Large $N$
论文作者
论文摘要
我们考虑对称产品($ s_n $)中的相关函数,该cfts在$ n $ at nutary seed CFT上都有相关性。具体来说,我们考虑使用完整的Virasoro发电机$ L_ {M} $和分数Virasoro Generators $ \ ell_ {m/n_i} $构建的后代运算符的相关器。使用覆盖空间技术,我们表明,后代的相关因子可以完全用祖先的相关因子来写,进一步是,适当的祖先是那些在封面上抬起共同原则的操作员。我们认为,覆盖空间数据应在此类计算中取消。为了支持这一主张,我们通过考虑形式的三分函数(4 cycle) - (2-cycle) - (5-cycle)提供一些示例计算,该功能将封面上任意初步的三分函数提升到封面及其后代的三点函数。在这些示例中,我们表明,虽然覆盖空间用于计算,但最终的下降关系并不取决于覆盖空间数据,也不依赖于哪种种子CFT用于构建Orbifold的细节,从而使这些结果通用。
We consider correlation functions in symmetric product ($S_N$) orbifold CFTs at large $N$ with arbitrary seed CFT. Specifically, we consider correlators of descendant operators constructed using both the full Virasoro generators $L_{m}$ and fractional Virasoro generators $\ell_{m/n_i}$. Using covering space techniques, we show that correlators of descendants may be written entirely in terms of correlators of ancestors, and further that the appropriate set of ancestors are those operators that lift to conformal primaries on the cover. We argue that the covering space data should cancel out in such calculations. To back this claim, we provide some example calculations by considering a three-point function of the form (4-cycle)-(2-cycle)-(5-cycle) that lifts to a three-point function of arbitrary primaries on the cover, and descendants thereof. In these examples we show that while the covering space is used for the calculation, the final descent relations do not depend on covering space data, nor on the details of which seed CFT is used to construct the orbifold, making these results universal.