论文标题

LICO-NET:用于硬件有效关键字点的线性化卷积网络

LiCo-Net: Linearized Convolution Network for Hardware-efficient Keyword Spotting

论文作者

Yang, Haichuan, Yang, Zhaojun, Wan, Li, Zhang, Biqiao, Shi, Yangyang, Huang, Yiteng, Enchev, Ivaylo, Tang, Limin, Alvarez, Raziel, Sun, Ming, Lei, Xin, Krishnamoorthi, Raghuraman, Chandra, Vikas

论文摘要

本文提出了用于关键字点的硬件效率架构,线性化的卷积网络(LICO-NET)。它专门针对小功率处理器单元(如微控制器)进行了优化。 ML操作员在强力硬件上展示了异质效率概况。鉴于确切的理论计算成本,INT8运算符比浮点运算符更有效,而线性层通常比其他层更有效。提出的LICO-NET是一个双相系统,在推理阶段使用有效的INT8线性操作员,并在训练阶段应用流汇集以保持高模型容量。实验结果表明,LICO-NET在硬件效率方面的表现优于单值分解过滤器(SVDF),并且具有PAR检测性能。与SVDF相比,LICO-NET在HIFI4 DSP上降低了40%的周期。

This paper proposes a hardware-efficient architecture, Linearized Convolution Network (LiCo-Net) for keyword spotting. It is optimized specifically for low-power processor units like microcontrollers. ML operators exhibit heterogeneous efficiency profiles on power-efficient hardware. Given the exact theoretical computation cost, int8 operators are more computation-effective than float operators, and linear layers are often more efficient than other layers. The proposed LiCo-Net is a dual-phase system that uses the efficient int8 linear operators at the inference phase and applies streaming convolutions at the training phase to maintain a high model capacity. The experimental results show that LiCo-Net outperforms single-value decomposition filter (SVDF) on hardware efficiency with on-par detection performance. Compared to SVDF, LiCo-Net reduces cycles by 40% on HiFi4 DSP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源