论文标题
最佳计算参数,以最高准确性和基于阿诺迪的时间稳定方法的最低成本用于流动全球稳定性分析
Optimal computational parameters for maximum accuracy and minimum cost of Arnoldi-based time-stepping methods for flow global stability analysis
论文作者
论文摘要
流量的全球不稳定性分析通常是基于Arnoldi算法的时期方法来进行的。在设置这些方法时,必须选择几个计算参数,这些计算参数会影响过程的固有错误,例如截断误差,流量求解器的离散误差,与Navier-Stokes方程的非线性项相关的误差以及与Jacobian Matrix近似值有限的近似值相关的误差。本文开发了理论方程,以估计每种情况的准确性和成本之间的最佳平衡。 2D开放腔流既用于解释参数对溶液的准确性和成本的影响,又用于验证预测的质量。这些方程式显示了每个参数对解决方案质量的影响。例如,如果使用高阶方法在过程中接近Fréchet衍生物,则表明该解决方案对较大的网格或更准确的流量求解器的速度更快地恶化。另一方面,较低的近似值对初始干扰幅度更敏感。然而,对于准确的流量求解器和中等网格尺寸,具有最佳计算参数的一阶Fréchet导数近似可以提供5个小数位置准确的特征值。进一步表明,基于准确性的最佳参数也倾向于导致最具成本效益的解决方案。预测方程,准则和结论是一般的,原则上适用于任何流程,包括3D。
Global instability analysis of flows is often performed via time-stepping methods, based on the Arnoldi algorithm. When setting up these methods, several computational parameters must be chosen, which affect intrinsic errors of the procedure, such as the truncation errors, the discretization error of the flow solver, the error associated with the nonlinear terms of the Navier-Stokes equations and the error associated with the limited size of the approximation of the Jacobian matrix. This paper develops theoretical equations for the estimation of optimal balance between accuracy and cost for each case. The 2D open cavity flow is used both for explaining the effect of the parameters on the accuracy and the cost of the solution, and for verifying the quality of the predictions. The equations demonstrate the impact of each parameter on the quality of the solution. For example, if higher order methods are used for approaching a Fréchet derivative in the procedure, it is shown that the solution deteriorates more rapidly for larger grids or less accurate flow solvers. On the other hand, lower order approximations are more sensitive to the initial disturbance magnitude. Nevertheless, for accurate flow solvers and moderate grid dimensions, first order Fréchet derivative approximation with optimal computational parameters can provide 5 decimal place accurate eigenvalues. It is further shown that optimal parameters based on accuracy tend to also lead to the most cost-effective solution. The predictive equations, guidelines and conclusions are general, and, in principle, applicable to any flow, including 3D ones.