论文标题
在非线性schrödinger方程中,哈密顿光谱流,马斯洛夫指数和站立波的稳定性
Hamiltonian spectral flows, the Maslov index, and the stability of standing waves in the nonlinear Schrödinger equation
论文作者
论文摘要
我们使用Maslov索引来研究一类线性哈密顿差异操作员的频谱。我们对正真实特征值的数量提供了一个下限,其中包括非规范交叉点对Maslov指数的贡献。对特征值曲线的仔细研究,代表特征值的演变,因为该域是缩小或扩展的,就相应的约旦链而言,它们在非规范交叉处的凹度产生了公式。这与同质技术一起,可以在这样的交叉处计算Maslov索引。我们将理论应用于非线性schrödinger方程中静波的稳定性在紧凑的空间间隔中。我们以琼斯的精神(Grillakis不稳定定理和Vakhitov- Kolokolov Criterion)的精神得出了新的稳定性。从实际线到紧凑的间隔传递时的基本差异是翻译不变性的损失,在这种情况下,线性化操作员的零特征值在几何上很简单。因此,稳定性结果因波浪满足的边界条件而有所不同。我们将涉及受限特征值计数的现有结果与现有结果进行了比较,在其中找到的校正因子与分析的对象(包括二阶Maslov Crossing表格)之间找到了直接关系。
We use the Maslov index to study the spectrum of a class of linear Hamiltonian differential operators. We provide a lower bound on the number of positive real eigenvalues, which includes a contribution to the Maslov index from a non-regular crossing. A close study of the eigenvalue curves, which represent the evolution of the eigenvalues as the domain is shrunk or expanded, yields formulas for their concavity at the non-regular crossing in terms of the corresponding Jordan chains. This, along with homotopy techniques, enables the computation of the Maslov index at such a crossing. We apply our theory to study the spectral (in)stability of standing waves in the nonlinear Schrödinger equation on a compact spatial interval. We derive new stability results in the spirit of the Jones--Grillakis instability theorem and the Vakhitov--Kolokolov criterion, both originally formulated on the real line. A fundamental difference upon passing from the real line to the compact interval is the loss of translational invariance, in which case the zero eigenvalue of the linearised operator is geometrically simple. Consequently, the stability results differ depending on the boundary conditions satisfied by the wave. We compare our lower bound to existing results involving constrained eigenvalue counts, finding a direct relationship between the correction factors found therein and the objects of our analysis, including the second-order Maslov crossing form.