论文标题

朝着强大的异常扩散标准

Towards a robust criterion of anomalous diffusion

论文作者

Sposini, Vittoria, Krapf, Diego, Marinari, Enzo, Sunyer, Raimon, Ritort, Felix, Taheri, Fereydoon, Selhuber-Unkel, Christine, Benelli, Rebecca, Weiss, Matthias, Metzler, Ralf, Oshanin, Gleb

论文摘要

异常扩散是扩散粒子与传统布朗动物定律的扩散动力学的偏离,是大量复杂的软性物质和生物系统的标志性特征。由于多种物理机制,例如捕获相互作用或环境的粘弹性,因此出现异常扩散。但是,有时系统动态被错误地声称是异常的,尽管事实是真正的运动是布朗尼人 - 反之亦然。在建立正常还是异常的动力学是否会带来深远的后果,例如在反应或松弛法的预测中,这种歧义是否会产生深远的后果。证明系统表现出正常或异常扩散是非常需要的,对于大量的应用而言。在这里,我们基于单轨迹的功率 - 光谱分析方法提出了异常扩散的标准。在存在两种类型的测量误差的情况下,研究了该标准的鲁棒性,用于分数 - 布朗尼 - 动作的轨迹,这是一种无处不在的随机过程,用于描述异常扩张。特别是,我们发现我们的标准非常适合次扩散。在不存在或存在其他位置噪声的情况下,对替代数据的各种测试证明了该方法在实际情况下的功效。最后,我们根据表现出正常和异常扩散的不同实验提供了概念验证。

Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the traditional law of Brownian-motion, is a signature feature of a large number of complex soft-matter and biological systems. Anomalous-diffusion emerges due to a variety of physical mechanisms, e.g., trapping interactions or the viscoelasticity of the environment. However, sometimes systems dynamics are erroneously claimed to be anomalous, despite the fact that the true motion is Brownian -- or vice versa. This ambiguity in establishing whether the dynamics as normal or anomalous can have far-reaching consequences, e.g., in predictions for reaction- or relaxation-laws. Demonstrating that a system exhibits normal- or anomalous-diffusion is highly desirable for a vast host of applications. Here, we present a criterion for anomalous-diffusion based on the method of power-spectral analysis of single trajectories. The robustness of this criterion is studied for trajectories of fractional-Brownian-motion, a ubiquitous stochastic process for the description of anomalous-diffusion, in the presence of two types of measurement errors. In particular, we find that our criterion is very robust for subdiffusion. Various tests on surrogate data in absence or presence of additional positional noise demonstrate the efficacy of this method in practical contexts. Finally, we provide a proof-of-concept based on diverse experiments exhibiting both normal and anomalous-diffusion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源